

Developing Selective, Targeted Multi-Cytokine Inhibitors for the Treatment of Immuno-Dermatology and Immuno-Oncology

Nazli Azimi, PharmD. PhD. Founder, President and CEO

Anti-Cytokine Therapy Has Been Successful in Treating a Variety of Dermatological Diseases

IL-4 and IL-13 inhibitor (for atopic dermatitis)

IL-17A inhibitor (for plaque psoriasis)

IL-2, IL-9, and IL-15 Are Implicated in Other Skin Diseases

Cutaneous T-cell lymphoma (CTCL)

Alopecia Areata (AA)

Vitiligo

Designing BNZ-1: an IL-2, IL-9, and IL-15 Inhibitor

IL-2, IL-9, and IL-15 share a common receptor, called common gamma-c (γc)

But the same γc receptor is also shared with 3 other cytokines: IL-4, IL-7, IL-21

In CTCL, AA, and Vitiligo IL-2, IL-9, and IL-15 are overexpressed and drive the pathology

What is the best strategy to selectively target and inhibit IL-2, IL-9, and IL-15?

conventional strategies:

1- generating a mAB against the common receptor

Fact: individuals with a natural non-functional mutation in the common receptor have severe-combined immunodeficiency (no B, T, or NK cells)

Inhibition of the γc receptor by a mAB or JAKi is not a preferred approach due to potential serious safety concerns

conventional strategies:

- 1- generating a mAB against the common receptor
- 2- using JAK inhibitors to block the downstream signaling

Both approaches will result in inhibition of all the six cytokines \rightarrow potential to develop severe immunodeficiency

Fact: individuals with a natural non-functional mutation in the common receptor have severe-combined immunodeficiency (no B, T, or NK cells)

Inhibition of the γ c receptor by a mAB or JAKi is not a preferred approach due to potential serious safety concerns

BNZ-1 is a PEGylated peptide that selectively inhibits IL-2, IL-9, and IL-15 and not the other cytokines in this family

BNZ-1 provides a highly targeted inhibition of cytokines that are disease drivers

BNZ-1 Has Been Tested in Two Clinical Trials: Phase I Study in Healthy Volunteers and Phase I/II Study in CTCL Patients

Phase I trial in healthy subjects:

43 healthy subjects treated with BNZ-1 across studies

- !✓ No dose-limiting toxicities
- ! ✓ No serious or severe effects
- No infusion reactions
- I ✓ No clinical lab abnormalities

Phase I/II trial in refractory CTCL patients:

A dose ranging study was completed across 4 doses

i (0.5, 1, 2, and 4 mg/kg)

- √ No dose-limiting toxicities
- √ Well tolerated
- √ No infusion reactions
- Preliminary efficacy was observed in some cohorts allowing for dose expansion

Preliminary Efficacy Data in Refractory CTCL Patients Observed After BNZ-1 Treatment

A dose expansion study at 2 mg/kg is ongoing to substantiate the safety and efficacy of BNZ-1 in CTCL patients

Top line data expected in Q2 2020

BNZ-1: Pipeline In a Product For An Immuno-Dermatology Franchise

- BNZ-1 is a selective inhibitor of IL-2, IL-9, and IL-15
- BNZ-1 has shown excellent safety profile in healthy subjects and CTCL patients
- BNZ-1 has shown preliminary clinical efficacy in highly treated refractory CTCL patients → proof of concept
- BNZ-1 has clinical utility in treatment of a number of immunodermatological disorders with high unmet medical need
 - Cutaneous T-Cell Lymphoma (CTCL)
 - Alopecia Areata (AA)
 - Vitiligo
- BNZ-1 addresses multi-billion dollar markets with no or limited: standard of care

